Identification of the ISWI Chromatin Remodeling Complex of the Early Branching Eukaryote Trypanosoma brucei

Received for publication, July 14, 2015, and in revised form, September 4, 2015. Published, JBC Papers in Press, September 15, 2015, DOI 10.1074/jbc.M115.679019

Tara Stanne, Mani Shankar Narayanan, Sophie Ridewood, Alexandra Ling, Kathrin Witmer, Manish Kushwaha, Simone Wiesler, Bill Wickstead, Jennifer Wood, and Gloria Rudenko

From the Division of Cell and Molecular Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom and the School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom

Background: Eukaryotes typically encode a range of ISWI chromatin remodeling complexes with different functions. We have identified and analyzed three novel ISWI partners in the early branching eukaryote Trypanosoma brucei. ISWI appears to have a single major ISWI complex.

Results: This unusually simple ISWI configuration could be a consequence of the relative lack of transcriptional regulation in this ancient eukaryote.

Eukaryotes package their genomic DNA into chromatin, whereby DNA is wrapped around octamers of histones forming nucleosomes. This allows the compaction of extensive stretches of DNA into the restricted space of the nucleus as well as being a major factor in controlling DNA access. For example, the exact phasing or degree of compaction of nucleosomes can either block or expose promoter sequences to recognition by the transcriptional machinery (1, 2). Chromatin remodeling therefore plays a major role in the regulation of gene expression, in addition to a range of other processes, including chromosome segregation and DNA replication and repair (3–6).

Chromatin remodelers in the ISWI family are highly conserved among eukaryotes and play a critical role in nucleosome assembly and spacing as well as in the organization of chromatin at a higher level in the cell (7–10). ISWI has a highly conserved SWI2/SNF2 family ATPase domain, which provides the motor for chromatin remodeling, and characteristic HAND-SANT-SLIDE domains with DNA binding activity (3, 5). Using DNA-dependent ATPase activity, ISWI remodelers change nucleosome spacing to promote chromatin assembly, which often results in the repression of transcription (11, 12).

In addition to their role in remodeling existing nucleosomes, they can also facilitate the de novo assembly of nucleosomes in concert with core histone chaperones (13).

ISWI invariably functions as part of a complex, and different eukaryotes have a diverse array of ISWI complexes, each with a discrete function (8). It is becoming increasingly clear that the ISWI partner subunits have a regulatory role and determine ISWI complex function (8, 10). In Saccharomyces cerevisiae, there are two different ISWI variants (Isw1 and Isw2), which in combination with different subunits, form a total of four different complexes (10). ISWI (Isw1) together with the Ioc3 subunit forms the Isw1a complex, which binds Pol I promoters and

* This work was supported by the Wellcome Trust. The authors declare that they have no conflicts of interest with the contents of this article.

© 2015 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
excludes the basal Pol II transcription machinery, thereby preventing transcription initiation (14). In contrast, Isw1 partnered with the Ioc2 and Ioc4 subunits forms the Isw1b complex, which regulates Pol II transcription elongation and termination (15–17).

In *Drosophila melanogaster*, six different functional ISWI complexes have been identified (CHRAC, ACF, NURF, RSF, ToRC, and NoRC), each containing ISWI bound to various combinations of nine different subunits (10, 18). Among these, the CHRAC and ACF complexes appear to have general roles in facilitating nucleosome sliding (19, 20). NURF appears to be particularly important for the epigenetic regulation of stem cells within the testis (21). RSF has a role in assembly of chromatin through the replacement of histone variants in addition to chromatin remodeling activities (22). ToRC is involved in the regulation of Pol II transcription (23), whereas NoRC is a nucleolar chromatin remodeling factor involved in silencing Pol I-mediated transcription of the rDNA repeats (24).

In mammalian cells (where the ISWI equivalents are referred to as SNF2H or SNF2L/SMARCA1), at least seven different ISWI complexes have a similar broad range of functions, including facilitating DNA repair (25, 26), activating Pol III transcription (27), or playing a role in the differentiation of somatic cells (28). Similar to in *Drosophila*, an NoRC complex is also present, which mediates the epigenetic regulation of rRNA genes as well as heterochromatin formation at repetitive regions, including the telomeres and centromeres (29–31).

The African trypanosome *Trypanosoma brucei* is a unicellular eukaryote and causative agent of African sleeping sickness (32). Trypanosomes are evolutionarily separated from eukaryotic model organisms and are in a different eukaryotic superphylum (32). Trypanosomes are evolutionarily separated from eukaryotes, we attempted to elucidate the role of ISWI complexes in their epigenetic regulation. ISWI is invariably part of different functional complexes in other eukaryotes, we attempted to elucidate the role of ISWI complex(es) in *T. brucei*.

The African trypanosome *Trypanosoma brucei* is a unicellular eukaryote and causative agent of African sleeping sickness (32). Trypanosomes are evolutionarily separated from eukaryotic model organisms and are in a different eukaryotic superphylum (32). Trypanosomes are evolutionarily separated from eukaryotes, we attempted to elucidate the role of ISWI complexes in their epigenetic regulation. ISWI is invariably part of different functional complexes in other eukaryotes, we attempted to elucidate the role of ISWI complex(es) in *T. brucei*.

Here we identify and analyze three novel ISWI partners in *T. brucei* that are expressed in both the bloodstream form (BF) and the procyclic form (PF) present in the tsetse fly insect vector. Surprisingly, these ISWI-interacting proteins include the nucleoplasmin-like protein (NLP), which we have previously shown to have a similar role to TbISWI in down-regulating ESs (55). We also identify two previously uncharacterized proteins: RCCP and FYRP. All of our experimental evidence points to the presence of a single major ISWI complex in *T. brucei*, although we cannot rule out the presence of minor subcomplexes. This relatively simple configuration of ISWI could be a consequence of the relative lack of extensive transcriptional control in this primitive eukaryote.

Experimental Procedures

Trypanosome Strains and Culturing—PF *T. brucei brucei* 427 was maintained at 27 °C in SDM-79 medium supplemented with 10% heat inactivated fetal calf serum and 5 mg ml\(^{-1}\) hemein (56). BF *T. brucei 427* was cultured at 37 °C in HMI-9 medium supplemented with 15% fetal calf serum (57).

For tandem affinity purification (TAP), TbISWI (GeneDB: Tb927.2.1810) and NLP (GeneDB: Tb927.10.5450) were tagged at the C terminus with a Protein C-tobacco etch virus (TEV) protease site-Protein A (PTP) epitope (58) in PF *T. brucei 427*. In order to ensure functionality of the TbISWI-PTP protein, PF lines were generated where the second TbISWI allele was knocked out using the pBSphleoNLPKO construct (54). Similarly, the NLP-PTP protein was shown to be functional through generation of cell lines where the second NLP allele was knocked out using the pBSphleoNLPO construct (55).

For the co-immunoprecipitation experiments, proteins were tagged in situ at the endogenous locus at the C terminus using either a triple Myc epitope or a triple HA epitope using either the pMoTAG42M or pMoTAG4H construct (59). These constructs were transfected into wild type PF cells or the BF
Identification of ISWI partners in *T. brucei*. A, tagging TbisWI with the PTP epitope. Western blot analysis of whole-cell protein lysates from procyclic form *T. brucei* lines probed with an anti-TbisWI antibody. Extracts from WT cells are compared with those from cells where a single TbisWI allele was either C-terminally tagged with the PTP epitope (ISWI-PTP) or knocked out (ISWI-sKO) or in two clones (1.1 and 1.2) where one TbisWI allele was knocked out and the other allele was PTP-tagged (ISWI-sKO/ISWI-PTP). Relevant bands are indicated, including TbisWI tagged with PTP (ISWI-PTP), untagged ISWI, or a cross-reactive band (CRB) which functions as a loading control. The signal for ISWI-PTP is particularly strong, presumably because the tagged protein binds to both the primary and the secondary antibodies. An equivalent of 1×10^7 cells were analyzed on a 6% gel. Size markers in kDa are indicated on the left. B, enrichment of PTP-tagged TbisWI using the TAP procedure. Samples isolated during the procedure were monitored using Western blot analysis of a 4–15% SDS-polyacrylamide gel. Samples from the input (1%), the IgG column flow-through (FT-IgG), the TEV protease eluate (TEV elu) (5%), flow-through from the anti-Protein C column (FT α-ProtC), or flow-through from the final eluate (EGTA elu) (20%) were compared. The blot was probed with an anti-TbisWI antibody. The location of TbisWI-PTP following TEV cleavage (ISWI-P) is indicated with an arrowhead. C, monitoring of TbisWI complex purification using Coomassie Blue staining of an SDS-polyacrylamide gel. A sample of the input (0.002% total) was compared with a sample of the IgG column flow-through (FT-IgG) (0.002%), the TEV eluate (TEV elu) (5% total), flow-through anti-Protein C column (FT α-ProtC: 0.08%), or the total concentrated EGTA eluate (EGTA elu: 100%). Bands were excised for mass spectrometry analysis, and the main hit for each band is indicated beside the arrowhead. In addition to TbisWI, three TbisWI-interacting partners were identified: the previously identified nucleoplasmin-like protein NLP and two novel proteins that we called RCCP (~70 kDa) and FYRP (~54 kDa). Histones H2A, H2B, and H4 (which ISWI interacts with) were also purified from the final eluate. Additional minor bands that are not labeled contained peptides corresponding to TbisWI, NLP, RCCP, and FYRP. Size markers in kDa are indicated on the left.
fuged twice at 20,000 × g at 2 °C. The supernatant was incubated at 4 °C with equilibrated IgG-Sepharose Fast Flow bead suspension (GE Healthcare) in a Poly-Prep chromatography column (Bio-Rad) with protease inhibitors for 3.5 h. The beads were washed, and the Protein A portion of the tag was removed by the addition of AcTEV protease (Invitrogen). The TEV eluate was incubated with anti-Protein C matrix (Roche Applied Science) in a fresh Poly-Prep column overnight at 4 °C. The anti-Protein C matrix was washed, and the final TAP-purified material was eluted with EGTA. The purified product was concentrated using a vacuum concentrator and StrataClean resin (Stratagene) before separation under denaturing or nondenaturing conditions on 4–15% SDS-polyacrylamide or polyacrylamide gels (Bio-Rad). Bands were visualized with Imperial Protein Stain (Thermo Scientific), excised as specified, and subjected to analysis by liquid chromatography-tandem mass spectrometry (Central Proteomics Facility, University of Oxford).

Co-immunoprecipitation—For co-immunoprecipitation (co-IP) analysis, TbISWI, NLP, RCCP, and FYRP were tagged at the C terminus with either a triple Mycepitope using the pMoTAG43M vector (59) or with a triple HA epitope using the pMoTAG4H vector (54, 55, 59) in PF and BF cell lines. Cell extracts were prepared as for the TAP tagging protocol (63), except that 0.1% Nonidet P-40 was added while extracting protein. Sepharose CL-4B columns (GE Healthcare) were prepared with ice-cold IP buffer (150 mM sucrose, 20 mM l-glutamic acid, 20 mM HEPES-KOH (pH 7.7), 3 mM MgCl₂, 1 mM DTT, 150 mM KCl, 0.1% Nonidet P-40) and incubated with either monoclonal anti-HA (ab1424, Abcam) or anti-Myc (M5546, Sigma) anti-
The ISWI Complex of T. brucei

FIGURE 3. Co-immunoprecipitation reactions show interaction between T. brucei ISWI and each of its partners in insect form trypanosomes. T. brucei cell lines were generated using procyclic form trypanosomes (PF WT) containing a Myc-tagged TbISWI and either an HA-tagged RCCP or HA-tagged FYRP (ISWI-Myc/RCCP-HA or ISWI-Myc/FYRP-HA, respectively). Alternatively, cell lines contained HA-tagged RCCP and Myc-tagged FYRP were analyzed. Using protein lysates from these cell lines, immunoprecipitation reactions were performed using either anti-Myc (α-myc) or anti-HA (α-HA) monoclonal antibodies or a no antibody control (No Ab). These immunoprecipitated samples were separated on SDS-polyacrylamide gels together with samples from the input (0.4% amount used for immunoprecipitation). Each blot was probed with antibodies against Myc (α-myc), NLP (α-NLP), HA (α-HA), TbISWI (α-ISWI), or the chromatin protein TDP1 (α-TDP), which served as a negative control. Relevant proteins are indicated on the right with arrowheads. Protein size markers in kDa are indicated on the left.

bodies or no antibody for 2 h at 4 °C. Crude extract (100 μl) was added to the columns with the immobilized antibodies and incubated for 2 h at 4 °C. Washes were carried out with ice-cold wash buffer (20 mM HEPES-KOH, pH 7.7, 3 mM MgCl2, 150 mM KCl, 0.1% Nonidet P-40). Purified proteins were eluted into boiling SDS-PAGE loading buffer, boiled for 5 min, and centrifuged at 1000 × g for 7 min. The supernatant was removed, and 15 μl was loaded onto either 8 or 10% polyacrylamide gels.

Flow Cytometry—RNAi was induced in the BF T. brucei T3, T3-FYRP, and T3-RCCP cell lines, and cells were harvested at different time points, washed once in PSG buffer, and fixed in 2% paraformaldehyde. These cell lines contain an eGFP reporter gene inserted behind the promoter of a silent VSG221 expression site. Fluorescence of the cells was monitored in the FL-1 channel using a BD FACSCalibur (BD Biosciences). Cell-Quest software (BD Biosciences) was used to calculate the average of 100,000 events (BD Biosciences). The -fold ES derepression was calculated by dividing the average FL-1 fluorescence of RNAi-induced populations at each time point by the average FL-1 fluorescence of uninduced populations. Three independent experiments were performed with each cell line with the S.D. values shown with error bars.

Analysis of Nucleic Acids and Proteins—The BF T. brucei T3-FYRP and T3-RCCP cell lines were used for quantitative RT-PCR. RNAi was induced against FYRP or RCCP, and total RNA was isolated at various time points using the RNeasy kit (Qiagen). RNA was treated with DNase using the TURBO DNA-free kit (Ambion), and reverse transcription was carried out using the Omniscript RT kit (Qiagen) with random hexamer primers (Promega). qPCR was performed on a 7500 Fast Real-Time PCR system (Applied Biosystems) using Brilliant II SYBR Green (Agilent Technologies). We used primers that our bioinformatic analyses indicated would recognize single copy sequences within the T. brucei genome (results not shown), and the reaction conditions for each primer pair were individually optimized. Control reactions without RT were performed using DNase-treated RNA for each time point. Transcript levels were normalized to levels for γ-tubulin transcripts and plotted as -fold increase with respect to the 0 h time point. Three independent experiments were performed, with S.D. values shown with error bars.

Whole-cell protein lysates were prepared by washing cells once in PSG buffer, followed by lysis in boiling hot 1× Laemmli buffer at an end concentration of 105 cells/μl. This was incubated at 100 °C for 10 min before loading onto 6 or 10% SDS-polyacrylamide gels. Gels were blotted onto Hybond-P membrane (Amersham Biosciences) and probed with rabbit polyclonal antibodies against Protein A, BiP (gift of Jay Bangs) (64), TbISWI (53), NLP (55), HA tag (ab9106, Abcam), Myc tag (ab9110, Abcam), TDP1 (gift of Klaus Ersfeld) (65), and RCCP. ECL peroxidase-labeled anti-rabbit IgG antibody (GE Healthcare) was used to detect bound antibodies, and the blots were visualized with Western Lightning Plus ECL (PerkinElmer Life Sciences) or ECL Plus (Amersham Biosciences).

Chromatin Immunoprecipitation—Chromatin immunoprecipitation (ChIP) was performed as described previously (55). HA-tagged copies of TbISWI, NLP, and FYRP in the BF T. brucei 221GP1(VO2+/) cell line (60) were immunoprecipitated...
FIGURE 4. Co-immunoprecipitation experiments show that TblISWI partners show similar interactions in bloodstream form as well as procyclic form *T. brucei*. Lysates from bloodstream form *T. brucei* 221GP1(VQ2+/H11001(BF WT)) containing RCCP tagged with the HA epitope and FYRP tagged with the Myc epitope (RCCP-HA/FYRP-myc) were compared with a line containing TblISWI tagged with the Myc epitope and FYRP tagged with the HA epitope (ISWI-myc/FYRP-HA). Immunoprecipitation experiments were carried out with antibodies against the Myc (α-myc) or HA epitope (α-HA) or a no antibody control (No Ab). These immunoprecipitated samples were separated on SDS-polyacrylamide gels together with samples from the input (0.4% of the amount used for immunoprecipitation). Blots were probed with antibodies against TblISWI, NLP, HA, Myc, or the chromatin protein TDP as a negative control. Relevant proteins are indicated on the right with arrowheads. Sizes of protein markers are indicated on the left in kDa.

FIGURE 5. Native gels show the presence of a single predominant TblISWI complex in *T. brucei*. A, TAP affinity purification was performed with lysates from procyclic form *T. brucei* containing TblISWI tagged with the PTP epitope. The purified material was separated on a 4–15% non-denaturing gel and silver-stained. The bands that were excised and sent for mass spectrometry are indicated with numbers on the right. The proteins subsequently identified in each band are also indicated. The sizes of the native gel protein marker are indicated in kDa on the left. B, as in A except that lysates were used from procyclic form cells where the TblISWI partner NLP was tagged with the PTP epitope. C, a schematic of the *T. brucei* TblISWI complex (TbIC) with TblISWI and its different partners indicated with colored spheres.
using a monoclonal anti-HA antibody (ab1424, Abcam) and compared with experiments performed with the parental cell line. RCCP was immunoprecipitated using polyclonal rabbit antiserum raised against RCCP, and as a control, the same amount (20 μl) of rabbit preimmune serum was used. As a negative control, samples where no antibody was used were included for all ChIPs. The ChIP material was analyzed using qPCR, and the final values for the percentage immunoprecipitated were obtained by subtracting the relevant no antibody control from the HA or RCCP ChIP and then dividing by the total input. Three independent experiments were performed for TbISWI, FYRP, and RCCP, and the S.D. values are shown with error bars indicating the S.D. from three replicate experiments. One representative NLP ChIP was performed with expression site promoters shown with white flags and T7 promoters with black flags. B, there is no significant reduction in growth after knockdown of RCCP. The parental T3 cell line and the T3-RCCP1 and T3-RCCP2 clones were incubated in the presence (+) or absence (−) of tetracycline. The cumulative growth was plotted over time, with error bars indicating the S.D. from three replicate experiments. C, depletion of RCCP leads to 17–37-fold derepression of the silent VSG221 expression site, as monitored using GFP. The top panel shows representative flow cytometry traces in the FL-1 channel either before or after induction of RCCP RNAi with tetracycline for 3 days. The bottom panel shows the mean -fold derepression in the T3-RCCP1 or T3-RCCP2 clones compared with the parental cell line (T3) after the induction of RCCP RNAi for the time indicated in days. Error bars, S.D. from three independent experiments. D, knockdown of RCCP transcript after the induction of RCCP RNAi for the time indicated in days. Transcript levels were determined using quantitative RT-PCR, normalized using γ-tubulin, and are shown relative to the 0 h time point. The results shown are the average of three independent experiments with error bars showing S.D. E, reduction in levels of RCCP protein after the induction of RCCP RNAi with tetracycline (Tet) for the time indicated in days. Protein lysates from the T3-RCCP cell line in the presence of RCCP RNAi were analyzed by Western blot. Blots were probed with a rabbit polyclonal antibody against RCCP. A cross-reactive band (CRB) is indicated as a loading control. The size of a marker protein in kDa is indicated on the left.

Results

Identification of TbISWI Partners—In general, in eukaryotes, ISWI is present in one or more functional complexes (10). We performed BLAST searches of the T. brucei genome with the sequences of ISWI partners in other organisms but were unsuccessful in detecting potential homologues in T. brucei. In order to identify TbISWI-interacting proteins, we used a TAP tagging approach with a PTP epitope tag (58). We generated a PF T. brucei cell line expressing a C-terminal PTP-tagged TbISWI protein from its endogenous locus (Fig. 1A). The second allele of TbISWI was knocked out (ISWI-sKO) without resulting in a growth defect, demonstrating that PTP-tagged TbISWI is fully functional (Fig. 1A).

This cell line was used for the TAP tagging procedure (Fig. 1, B and C). Briefly, a crude protein extract was first purified by IgG affinity chromatography, and the TEV protease was used to cleave off the Protein A portion of the PTP tag. Subsequently, the TEV protease eluate underwent anti-Protein C affinity purification, and the final purified products were eluted with EGTA. The concentrated proteins, along with fractions obtained throughout the purification procedure, were separated by SDS-PAGE under denaturing conditions (Fig. 1, B and C).

We monitored the enrichment of TbISWI-PTP by Western blot using an anti-TbISWI antibody (Fig. 1B) to show that the purification was successful. The same samples were separated by SDS-PAGE and stained with Coomassie, where a range of bands were easily detectable in the final eluate (Fig. 1C). These bands were excised, and the associated proteins were identified.
The ISWI Complex of T. brucei

by liquid chromatography/tandem mass spectrometry (LC-MS/MS). As expected, TbISWI-P was recovered in the EGTA eluate (Fig. 1C) (108 unique peptide hits) as well as histones H2A, H2B, and H4. Because ISWI is a nucleosomere modeler, this interaction with histones is not unexpected. However, three additional potential TbISWI partners were discovered with molecular masses of ~110, 70, and 55 kDa, with 70, 32, and 26 unique peptide hits, respectively.

Unexpectedly, one of these TbISWI-interacting proteins (110 kDa) was the NLP, which contains an AT-hook and a nucleoplasmin-like domain and is essential in BF T. brucei (110 kDa). TbISWI-P was recovered in the EGTA eluate (Fig. 1C) (108 unique peptide hits) as well as histones H2A, H2B, and H4. Because ISWI is a nucleosomere modeler, this interaction with histones is not unexpected. However, three additional potential TbISWI partners were discovered with molecular masses of ~110, 70, and 55 kDa, with 70, 32, and 26 unique peptide hits, respectively.

The 54-kDa TbISWI-interacting protein was named FYRP (Tb927.7.1060) because it has an N-terminal phenylalanine/tyrosine-rich (FYR) domain (Fig. 2A). FYR domains are poorly characterized but have been found in chromatin-associated proteins, including histone methyltransferases, such as trithorax (67, 68). Because NLP was one of the TbISWI-interacting proteins, we subsequently also performed tandem affinity purification with NLP tagged with the PTP epitope (results not shown). Again, we identified TbISWI, RCCP, and FYRP with a significant number of unique peptide hits (95, 46, and 26, respectively).

We next investigated whether TbISWI and its interacting partners were conserved in a range of different eukaryotic species (Fig. 2B). TbISWI is orthologous to ISWI in S. cerevisiae and SMARCA1/SNF2L in Homo sapiens. This protein is very highly conserved across eukaryotes, with orthologs present in all species analyzed from a wide range of lineages. In contrast, TbISWI-interacting proteins appear to be restricted to the Kinetoplastida. NLP and FYRP homologs are only identifiable in this lineage. RCCP is an RCC1 repeat domain-containing protein specific to the Kinetoplastida (Fig. 2B).
TbISWI Interacts with Its Partners Forming the TbISWI Complex (TbIC) in T. brucei—Is ISWI present in one or multiple complexes in T. brucei? Typically, in different eukaryotes, ISWI is a component of a number of functional ISWI complexes, with discrete roles depending on the composition of the subunits (8, 10). We investigated whether the potential TbISWI partners identified through TAP affinity purification were indeed interacting with TbISWI and with each other. We performed co-IP experiments in PF cells that contained Myc-tagged TbISWI and HA-tagged RCCP or FYRP proteins. Immunoprecipitation with either anti-Myc or anti-HA monoclonal antibodies was followed by Western blot analysis to determine whether other potential TbISWI complex components were co-purified. (Fig. 3). We used an anti-Myc antibody to detect TbISWI-Myc (138 kDa), polyclonal anti-NLP antibody to detect NLP (107 kDa), and anti-HA antibody to detect RCCP-HA and FYRP-HA (74 and 57 kDa, respectively). NLP, RCCP, and FYRP were all co-purified when TbISWI was pulled down. We also found that TbISWI and NLP co-purified when RCCP or FYRP were immunoprecipitated.

Further co-IP experiments were performed in PF cells with different combinations of tagged proteins, and it was shown that when FYRP is pulled down, RCCP is co-purified, and vice versa (Fig. 3). Co-IP experiments showed similar interactions between TbISWI and its proposed partners in BF cells (Fig. 4). These extensive co-IP experiments argue that there is at least one ISWI complex containing TbISWI, NLP, RCCP, and FYRP and that all members of this complex interact with each other in both BF and PF life cycle stages of T. brucei.

To elucidate whether TbISWI forms one complex or multiple subcomplexes, TbISWI-PTP and its co-purified components from the TAP affinity purification experiments were separated under nondenaturing conditions and silver-stained (Fig. 5A). Similarly, the same experiment was performed with TAP affinity-purified NLP-PTP (Fig. 5B). The visible bands were excised and analyzed by mass spectrometry. A predominant major band was seen in both cases, corresponding to either TbISWI or NLP complexed with each other and with RCCP. FYRP was detected in both experiments, albeit below the threshold score of 80, indicating weak association with this complex. However, based on its score in the initial TbISWI and NLP TAP tagging experiments and the extensive co-IP experiments, we are confident that FYRP is a true member of the TbISWI complex. Additional minor bands observed below the main band contain different stoichiometries of complex partners indicating possible different degradation states of a single complex. These data therefore indicate that there is a single major T. brucei ISWI complex (TbIC) (Fig. 5C). However, we cannot exclude the presence of additional minor subcomplexes composed of just some of the TbISWI subunits.

FIGURE 8. T. brucei ISWI and its partners colocalize at the Pol I-transcribed rDNA and procyclin loci in bloodstream form T. brucei. A, schematic of a typical rDNA transcription unit, with genes indicated with black boxes, and the rDNA promoter indicated with a black flag. Regions analyzed by qPCR are indicated with letters. B, colocalization of TbISWI and its partners at the rDNA locus. Chromatin from T. brucei ISWI-HA, NLP-HA, FYRP-HA, or WT cells was immunoprecipitated with an anti-HA antibody. Chromatin from parental cells was immunoprecipitated with an anti-RCCP antibody, and rabbit preimmune serum (PI) was used as a negative control. The genomic regions analyzed are indicated in the schematic and listed above the graphs. Results are presented as the amount immunoprecipitated (percentage of input (% IP)) after subtraction of the no antibody control. Results shown are the mean of three independent experiments with the S.D. indicated with error bars, apart from NLP. Here the results are from one representative ChIP experiment because similar data have been published previously by Narayanan et al. (55). C, a diagram of the EP procyclin locus transcribed by multifunctional Pol I. A black flag depicts the procyclin promoter, and letters indicate the regions that were analyzed using qPCR. D, different TbISWI partners colocalize at the procyclin locus. Immunoprecipitated chromatin at the procyclin genomic loci was analyzed as indicated in the legend for B. Regions analyzed are shown above the graphs.
Depletion of FYRP or RCCP Results in Derepression of Silent VSG Expression Sites—We have previously established that both TbISWI and NLP play a role in ES silencing (53, 55). We investigated the role of RCCP and FYRP on ES control using a BF T. brucei VSGT3-expressing reporter cell line where eGFP had been inserted immediately downstream of the promoter of the inactive VSG221 ES (53). RNai was induced against RCCP, resulting in a reduction in transcript levels to about 60% of normal levels, with a simultaneous reduction in levels of protein (Fig. 6). Only a minor reduction in cell growth was observed. However, there was an observed 17–37-fold derepression of eGFP in the silent VSG221 ES after 72 h as monitored in the FL-1 channel using flow cytometry (Fig. 6C).

We performed a similar analysis of the role of FYRP (Fig. 7). The FYRP transcript was reduced to 50% of normal levels after 24 h. FYRP protein knockdown was investigated using a cell line with an HA-tagged copy of FYRP, which was knocked down to undetectable levels after a 96-h induction of RNAi (Fig. 7E). Here too, although the induction of RNAi resulted in only a minor reduction in cell growth (Fig. 7B), there was 26–61-fold derepression of the silent VSG221 ES.

Genomic Localization of the TbISWI Complex—The native gels and the co-IP experiments suggested that there is a single predominant TbISWI complex (TbIC) in T. brucei. However, to investigate this further, we determined the genomic localization of the four potential components using ChIP experiments. ChIP was performed in different BF cell lines expressing either HA-tagged TbISWI, HA-NLP, or HA-FYRP, using a monoclonal anti-HA antibody. Multiple attempts of ChIP using HA epitope-tagged RCCP proved unsuccessful, indicating a possible lack of accessibility of the HA epitope to antibodies when the ISWI complex is in association with DNA. We therefore used a rabbit polyclonal antibody against RCCP in the RCCP ChIP experiments.

We first investigated the localization of the TbISWI complex components at the RNA Pol I-transcribed rDNA loci (Fig. 8A). TbISWI and NLP are relatively depleted within Pol I transcription units but enriched at non-transcribed regions (53, 55). This pattern of localization was also observed for RCCP and FYRP (Fig. 8B). In the case of FYRP, the statistical significance of this differential localization was extremely significant \(p < 0.001 \) (primer pairs a versus primer pairs b or primer pairs e versus primer pairs b, c, or d). In the case of RCCP, although there was a trend, this was not statistically significant. Similarly, at the Pol I-transcribed procyclin loci (Fig. 8C), TbISWI and NLP are relatively enriched upstream compared with within the transcription units (53, 55). This was also the case for both RCCP and FYRP with a statistical significance of \(p = 0.01–0.05 \) (primer pairs a versus primer pairs b or c) in both cases (Fig. 8D).

Pol II transcription units in T. brucei are polycistronic. Pol II transcription initiates in SSRs, where two opposing transcription units diverge, and terminates where they converge. TbISWI was proposed to be enriched at these SSRs and particularly in the regions around divergent SSRs containing promoters (54). ChIP experiments with ISWI are very difficult to perform, presumably as a consequence of the relatively low affinity of this chromatin remodeler for DNA.

The TbISWI, NLP, RCCP, and FYRP appeared to bind regions around different Pol II SSRs (Fig. 9). In parallel, ChIP experiments were also performed with histone H3, serving as a positive control for the ChIP procedure (result not shown). There was possible colocalization of ISWI subunits at the SSR divergent regions D1 and D2; however, these results were not statistically significant. All members of the TbISWI complex associate with chromatin and show a trend of localizing to similar genomic regions, which is statistically significant at Pol I loci. All of these different experimental approaches that show all TbIC components interacting and present at a variety of genomic loci argue that there is a single predominant ISWI complex in T. brucei.

Discussion

In eukaryotes, the ISWI chromatin remodeler is typically present in a variety of different complexes with distinct functions, depending on exactly which subunits ISWI is partnered up with. Here, we have characterized TbISWI and its interacting partners in T. brucei and provide evidence for a single major ISWI complex (TbIC) in both BF and PF T. brucei. Using a number of different experimental methods, we show that all of the TbIC subunits are expressed and interact with each other in both trypanosome life cycle stages. The previously characterized nucleoplasmin-like protein NLP was found to be a member of this TbIC complex. This unexpected discovery explains the observation that knockdown of either TbISWI or NLP leads to similar phenotypes, including the derepression of VSG ESs. In addition, using TAP affinity purification with either TbISWI or NLP, we identify two novel and previously uncharacterized TbIC components: RCCP and FYRP. Neither of these ISWI partners is a homologue of known ISWI partners in other eukaryotes. However, both proteins contain amino acid sequence motifs indicating a possible interaction with chromatin.

The TbISWI-interacting RCCP protein contains four RCC1 protein motifs, which characterize the RCC1 superfamily of proteins (66). The RCC1 family is a diverse group of proteins which contain variable numbers of RCC1-like domains, with a tertiary structure resembling a seven-bladed propeller (69). RCC1 is the best characterized member of this family and is a DNA-binding protein that regulates the onset of chromosome condensation (70). RCC1 is localized to chromatin throughout the cell cycle and is a guanine nucleotide exchange factor for Ran (71–73). RCC1 binds nucleosomes, recruits Ran to the chromatin, and activates Ran nucleotide exchange activity (72, 74). It therefore plays a central role in establishing the RanGTP concentration gradient around the chromosome, which is key for a number of processes to occur, including mitosis (75–77). In this regard, it is interesting that it has been reported that in Xenopus, ISWI is a RanGTP-dependent microtubule-associated protein required for chromosome segregation (78). Although in T. brucei, knockdown of TbISWI and its subunits leads to derepression of VSG ESs, we have not seen obvious disruption of chromosome segregation.

In contrast, the TbISWI-interacting protein FYRP is characterized by a FYRC domain. FYRC protein motifs contain a phenylalanine- and tyrosine-rich region that is poorly character-
ized and is found in an assortment of chromatin-associated proteins (68). FYRC domains are typically found in association with protein modules that recognize histone modifications (79). FYRC motifs have been identified in the Drosophila trithorax protein, involved in the epigenetic regulation of gene expression during fly development, and X chromosome-interacting proteins (67).

One possibility that could explain our data is that in T. brucei, FYRP is the most prone to disassociate from the TbIC ISWI complex compared with the other three subunits. Although we repeatedly identified FYRP by mass spectrometry using TAP affinity purification with either ISWI or NLP as bait, the score was consistently the lowest of the four TbIC components. In addition, FYRP was not identified in the TbIC complex using native gel analysis. However, co-IP experiments showed clear interaction of FYRP with every other TbIC subunit (TbISWI, NLP, and RCCP). In addition, ChIP experiments showed a trend for localization of FYRP with other TbIC members on similar regions of genomic DNA. Similarly, knockdown of FYRP also led to comparable derepression of silent VSG ESs as observed after knockdown of the other TbIC subunits. Our data therefore indicate that FYRP could have a weak or transient interaction with other complex members, making it prone to disassociation during protein affinity purification.

Is there indeed only one ISWI complex in T. brucei? Both the TbISWI and NLP affinity purification experiments identified each other as well as the RCCP and FYRP subunits. In addition, as mentioned above, co-IP experiments in both life cycle stages show that all four components interact with each other, and ChIP experiments indicate that all four proteins associate with similar regions of genomic DNA. Therefore, all of the available evidence, using a variety of different experimental approaches, would argue that a single predominant TbISWI complex is present in the early branching eukaryote T. brucei. As expected for subunits participating in the same complex, knockdown of each of these TbIC subunits leads to VSG ES derepression. However, these experiments do not rule out the presence of minor TbISWI complexes containing a subset of the subunits.

Chromatin remodelers, including ISWI complexes, are extremely difficult to analyze using ChIP (80). This may be indicative of the transient nature of the interactions between these remodeling complexes and specific DNA sequences as they move along the genome changing nucleosome spacing (81). Despite these technical hurdles, colocalization of ISWI with different interacting subunits using ChIP can indicate the presence of discrete functional ISWI complexes at different genomic locations (80). Previous ChIP analyses of TbISWI have argued that there is a possible enrichment of TbISWI at the Pol II SSRs, which contain transcriptional boundaries, including Pol II promoters and terminators (35, 54). This is comparable with what has been found in other organisms, including S. cerevisiae.

In S. cerevisiae, ISWI is important for regulation of Pol II transcription, and ISWI variants are found both within Pol II
gene bodies and at both promoters and terminators. The Isw1 variant has different functions, depending on which loc subunits it is partnered with (14, 17). Isw1 in complex with loc3 forms the Isw1a complex, which represses initiation of transcription at Pol II promoters (15). In contrast, Isw1 partnered up with the loc2 and loc3 subunits forms the Isw1b complex, which either acts within Pol II coding regions to control elongation of transcription or alternatively facilitates transcription termination (15). The Isw2 ISWI variant is particularly enriched at the nucleosome-depleted region around Pol II promoters, where it appears to play a role in maintaining a high density of nucleosomes within the Pol II-transcribed gene bodies (81). This reduces the amount of inappropriate Pol II transcription initiation from gene internal cryptic sites and suppresses antisense transcription.

In T. brucei, we found a trend for TbiISWI and the NLP, RCCP, and FYRP subunits binding at both divergent and convergent Pol II strand switch regions; however, these data supporting four proteins being relatively enriched in these regions were not statistically significant. This relative simplicity of ISWI complex architecture could be a consequence of the lack of control of Pol II expression in T. brucei at the level of either transcription initiation or elongation (82).

In most eukaryotes, Pol I exclusively transcribes the rDNA arrays, of which typically about half are transcriptionally silent (83). ISWI variants also play a role in this regulation of Pol I, which in mammals is mediated by the ISWI-containing NoRC complex consisting of ISWI (SNF2H) in complex with the TIP5 subunit (84). This NoRC complex mediates the formation of heterochromatin both at the silent rDNA repeats and at the centromeres (31). In T. brucei, all of the TbIC components are located at the rDNA, particularly in the non-transcribed spacer. This is also the case at the Pol I-transcribed procyclin loci and the ESs (85), although no particular enrichment was observed at either active or silent ESs (54). Because knockdown of all the TbIC components leads to derepression of silent ESs, it is clear that ISWI plays a role in regulation of Pol I transcription in T. brucei.

All of our experimental evidence therefore points to a single ISWI-containing complex in T. brucei, which is a very early branching eukaryote, although we cannot rule out the presence of relatively minor subcomplexes. The apparent presence of all TbIC components at a range of different genomic loci, including Pol II SSRs, as well as at different Pol I loci argues that the predominant TbIC complex could be multifunctional. Chromatin remodeling enzymes appear to have arisen soon after the origin of the eukaryotic lineage, and as eukaryotic genomes expanded in size and complexity, there was an increasing need for a larger array of specialized chromatin remodeling factors (1). In common with other parasites, T. brucei appears to have a relatively reduced set of these chromatin remodelers, coupled with a greatly reduced set of Pol II transcription factors (1, 86). Possibly, as T. brucei evolved, large amounts of gene loss occurred as a consequence of the lack of the need for intricate control systems as the organism relied on constitutive transcription by Pol II. We show that the major T. brucei TbIC complex contains novel subunits compared with other non-nucleosome-containing eukaryotes.

The challenge for us now is to understand the role of these unique chromatin remodelers in the maintenance of genome architecture in these ancient eukaryotes. In addition, hopefully, increased knowledge of the role that these divergent chromatin remodelers play in transcriptional control, including that of the VSG expression sites, will allow us to disrupt this process, thereby leading to new forms of antiparasitic therapies.

Author Contributions—T. S., M. N., A. L., and G. R. designed the study. G. R. and S. R. wrote the paper. B. W. performed bioinformatic analyses. T. S., M. N., S. R., A. L., K. W., M. K., S. W., and J. W. performed the experiments. All authors analyzed the results and approved the final version of the manuscript.

Acknowledgments—We thank Prof. Jane Mellor (University of Oxford) and Catarina Gadelha for discussions and Belinda Hall, Cher-Pheng Ooi, Jackie Cheung, Louise Kerry, Dennis Ledwon, and George Buckle for discussions and comments on the manuscript. We are very grateful to Viola Denninger for expert advice on analysis of the mass spectrometry data. We thank Rebekka Bauer for experimental assistance with qPCR experiments, Matt Wand for generation of constructs used for TbiISWI analysis, Prof. Jay Bangs (SUNY Buffalo) for the anti-BiP antibody, and Prof. Klaus Ersfeld (University of Bayreuth) for TDPI antibody.

References
The ISWI Complex of T. brucei

cerevisiae. Biochim. Biophys. Acta 1677, 100–112
26. Marcello, L., and Barry, D. J. (2007) Analysis of the VSG gene silent archive in Trypanosoma brucei reveals that mosaic expression is prominent in antigenic variation and is favored by archive substructure. Genome Res. 17, 1344–1352

Microbiology:
Identification of the ISWI Chromatin Remodeling Complex of the Early Branching Eukaryote *Trypanosoma brucei*

Tara Stanne, Mani Shankar Narayanan, Sophie Ridewood, Alexandra Ling, Kathrin Witmer, Manish Kushwaha, Simone Wiesler, Bill Wickstead, Jennifer Wood and Gloria Rudenko

doi: 10.1074/jbc.M115.679019 originally published online September 15, 2015

Access the most updated version of this article at doi: 10.1074/jbc.M115.679019

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 86 references, 31 of which can be accessed free at http://www.jbc.org/content/290/45/26954.full.html#ref-list-1